The Moderating Role of Institutional Pressures: Adoption of Emerging Technologies in Audit Firms under a Regulated Environment
Mahmoud jaradat
Published: 2025/05/21
Abstract
This study examines the determinants of emerging technology adoption (e.g., AI, blockchain, RPA, data analytics) in audit firms operating within a regulated environment, drawing on the Technology-Organization-Environment (TOE) framework. It analyzes the direct effects of technological competence, organizational absorptive capacity, and institutional pressures, and investigates the moderating role of the environmental context on these relationships. A quantitative survey design was employed, collecting data from 114 audit professionals. The data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM), with measurement models ensuring reliability and validity and a structural model testing the hypotheses. The results validate the TOE framework, showing that organizational context (absorptive capacity) is the strongest predictor of adoption (β = 0.79, p < 0.001) followed by technological context (β = 0.67, p < 0.001) and environmental pressures (β = 0.34, p < 0.05). Crucially, normative pressure was found to be a significant positive moderator, while coercive and mimetic pressures were not. The study confirms that successful adoption in auditing hinges not just on technology but primarily on organizational learning capabilities and is significantly influenced by professional and regulatory norms. It offers practical insights for firms to prioritize capability building and for regulators to shape effective normative guidance, contributing to theory by integrating institutional and absorptive capacity perspectives into the TOE framework.
Keywords
The Moderating Role of Institutional Pressures: Adoption of Emerging Technologies in Audit Firms under a Regulated Environment is licensed under CC BY 4.0
References
- Al-Htaybat, K., & Von Alberti-Alhtaybat, L. (2017). Big Data and corporate reporting: impacts and paradoxes. Accounting, Auditing & Accountability Journal, 30(4), 850–873. https://doi.org/10.1108/AAAJ-07-2015-2139
- Ali, M., & Park, K. (2016). The mediating role of an innovative culture in the relationship between absorptive capacity and technical and non-technical innovation. Journal of Business Research, 69(5), 1669–1675. https://doi.org/10.1016/j.jbusres.2015.10.036
- Appelbaum, D., & Nehmer, R. A. (2017). Using drones in internal and external audits: An exploratory framework. Journal of Emerging Technologies in Accounting, 1, 99–113. http://10.2308/jeta-51704
- Arpaci, I., Yardimci, Y. C., Ozkan, S., & Turetken, O. (2012). Organizational, adoption of information technologies: a literature review. International Journal of eBusiness and eGovernment Studies, 4(2), 37–50.
- Austin, A., Carpenter, T, Christ, M & Nielson, C. (2019). The data analytics transformation: Evidence from auditors, CPOs, and standard-setters. SSRN. http://10.2139/ssrn.3214140
- Baron, R. M., & Kenny, D. A. (1986). The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182. DOI: 10.1037//0022-3514.51.6.1173
- Barr-Pulliam, D., Brown-Liburd, H. L., & Sanderson, K. A. (2021). The effects of the internal control opinion and use of audit data analytics on perceptions of audit quality, assurance, and auditor negligence. Auditing: A Journal of Practice and Theory, 41(1), 25–48. https://doi.org/10.2308/AJPT-19-064
- Bradley, S. W., Shepherd, D. A., & Wiklund, J. (2011). The importance of slack for new organizations facing 'tough' environments. Journal of Management Studies, 48(5), 1071–1097. https://doi.org/10.1111/j.1467-6486.2009.00906.x
- Brown-Liburd, H., & Vasarhelyi, M. (2015). Big Data and Audit Evidence. Journal of Emerging Technologies in Accounting, 12(1), 1–16. https://10.2308/jeta-10468
- Carpenter, V. L., & Feroz, E. H. (2001). Institutional theory and accounting rule choice: An analysis of four US state governments' decisions to adopt generally accepted accounting principles. Acc. Organ. Soc., 26(7), 565–596. https://doi.org/10.1016/S0361-3682(00)00038-6
- Cohen, W., & Levinthal, D. (1990). Absorptive capacity, a new perspective on learning and innovation, Admin. Sci. Quart, 35(1), 128–152. https://doi.org/10.2307/2393553
- Cooper, L. A., Holderness, D. K., Sorensen, T. L., & Wood, D. A. (2019). Robotic Process Automation in Public Accounting. Accounting Horizons, 33(4), 15–35. http://dx.doi.org/10.2139/ssrn.3193222
- Coraiola, D. M, & Machado-da-Silva, C. L. (2008). A influência dos discursos no isomorfismo organizacional: as mudanças gráficas em jornais brasileiros. Revista Eletrônica de Ciência Administrativa, 7(2), 1-13.
- Cruz-Jesus, F., Pinheiro, A., & Oliveira, T. (2019) Understanding CRM adoption stages: Empirical analysis building on the TOE framework. Computers in Industry 109: 1–13. https://doi.org/10.1016/j.compind.2019.03.007
- Dagliene, L., & Kloviené, L. (2019). Motivation to use big data and big data analytics in external auditing. Managerial Auditing Journal, 34(7), 750–782. https://doi.org/10.1108/MAJ-01-2018-1773
- Dedoulis, E. (2016). Institutional formations and the Anglo-Americanization of local auditing practices: The case of Greece. Accounting Forum, 40(1), 29–44. https://doi.org/10.1016/j.accfor.2015.11.003
- Deloitte. (2024). How WestRock harnessed GenAI to enhance internal audit. Deloitte WSJ.
- Dimaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 48(2), 147–160. https://doi.org/10.2307/2095101
- Ding, K., Peng, X., Lev, B., Sun, T., & Vasarhelyi, M. A. (2020). Machine Learning Improves accounting estimates: evidence from insurance payments. Review of Accounting Studies 25, 1098-1123. https://doi.org/10.1007/s11142-020-09546-9
- Eilifsen, A., Kinserdal, F, Messier Jr & Mckee, T. E. (2020). An exploratory study into the use of audit data analytics on audit engagements. Accounting Horizons, 34(4). http://10.2308/HORIZONS-19-121
- EY. (2024). AI-based fraud detection in auditing. Financial Times.
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of Marketing, 18(1), 39-59. https://doi.org/10.2307/3151312
- Glover, J. L., Champion, D., Daniels, K. J., & Dainty, A. J. D. (2014). An Institutional Theory perspective on sustainable practices across the dairy supply chain. International Journal of Production Economics, 152, 102-111. https://doi.org/10.1016/j.ijpe.2013.12.027
- Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Danks, N. (2021). Partial least squares structural equation modeling (PLS-SEM) using R. Springer. https://doi.org/10.1007/978-3-030-80519-7
- Handoko, B. L. (2021). How audit firm size moderate effect of TOE context toward auditor adoption of machine learning. Journal of Theoretical and Applied Information Technology, 99(24), 5972-5980.
- Handoko, B. L., & Thomas, G. N. (2021). How audit firm size moderate effect of TOE context toward auditor adoption of technology. Turkish Journal of Computer and Mathematics Education, 12(6), 1518-1526.
- Henseler, J., & Fassott, G. (2010). Testing Moderating Effects in PLS Path Models: An Illustration of Available Procedures. Handbook of Partial Least Squares, 713-735.
- Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
- Hinings, B., Gegenhuber, T., & Greenwood, R. (2018). Digital innovation and transformation: An institutional perspective. Information and Organization, 28(1), 52–61. https://doi.org/10.1016/j.infoandorg.2018.02.004
- Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (HUU) in auditing: A framework. International Journal of Accounting Information Systems, 35, 1-11. https://doi.org/10.1016/j.accinf.2019.100433
- Inghirami, I. E. (2018). Accounting Information Systems in the Time of Blockchain. Pávia: ITAIS Conference.
- KPMG. (2024). Most Australian companies now using AI for financial processes. The Australian.
- Kroon, N., Alves, M. C., & Martins, I. (2021). The Impacts of Emerging Technologies on Accountants’ Role and Skills: Connecting to Open Innovation—A Systematic Literature Review. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 2021. https://doi.org/10.3390/joitmc7030163
- Li, Q., & Vasarhelyi, M. (2018). Developing a Cognitive Assistant for the Audit Plan Brainstorming Session. The International Journal of Digital Accounting Research, 18, 119–140. https://doi.org/10.4192/1577-8517-v18_5
- Low, C., Chen, Y., & Wu, M. (2011). Understanding the determinants of cloud computing adoption. Industrial management & data systems, 111(7), 1006-1023. https://doi.org/10.1108/02635571111161262
- Martins, R., & Oliveira, T. (2023). Digital literacy, absorptive capacity, and technology adoption in organizations. Information Systems Frontiers. https://doi.org/10.1007/s10796-023-10427-9
- Moffitt, K. C., Rozario, A. M., & Vasarhelyi, M. A. (2018). Robotic process automation for auditing. Journal of Emerging Technologies in Accounting, 15(1), 1–10. DOI: 10.2308/jeta-10589
- Montes, G. A., & Goertzel, B. (2019). Distributed, decentralized, and democratized artificial intelligence. Technological Forecasting and Social Change,141, 354-358. https://doi.org/10.1016/j.techfore.2018.11.010
- Oliveira, T., Martins, R., Sarker, S., Thomas, M., & Popovic, A. (2019). Understanding SaaS adoption: The moderating impact of the environment context. International Journal of Information Management, 49, 1-12. https://doi.org/10.1016/j.ijinfomgt.2019.02.009
- PCAOB & IFAC. (2024). Guidelines on auditing standards and technology adoption.
- Pimentel, E., & Boulianne, E. (2020). Blockchain in Accounting Research and Practice: Current Trends and Future. Opportunities. Accounting Perspectives, 19(4), 325-361. https://doi.org/10.1108/AAAI-10-2020-4991
- Pivar, J. (2021) Adoption of big data technologies in smart cities of the European Union: Analysis of the importance and performance of technological factors. Croatian Regional Development Journal, 2(1), 11-29. DOI:10.2478/crdj-2021-0005
- Rahman, M. M., & Alsmadi, M. K. (2022). Institutional pressures and technology adoption: Evidence from developing countries. Technological Forecasting & Social Change, 182, 121841. https://doi.org/10.1016/j.techfore.2022.121841
- Rosli, K., Siew, E.G., & Yeow, P. H. P. (2016). Technological, Organizational and Environmental Aspects of Audit Technology Acceptance. International Journal of Business and Management, 11(5), 140-145. Doi: 10.5539/ijbm.v11n5p140
- Rozario, A. M., & Vasarhelyi, M. A. (2019a). Auditing with smart contracts. International Journal of Digital Accounting Research, 18(1), 1-27. https://doi.org/10.4192/1577-8517-v18_1
- Rozario, A. M., & Vasarhelyi, M. A. (2019b). How robotic process automation is transforming accounting and auditing. The CPA Journal, 88, 46-49. https://doi.org/10.20869/AUDITF/2020/160/024
- Salijeni, G., Samsonova-Taddei, A., & Turley, S. (2019). Big Data and Changes in Audit Technology: Contemplating a Research Agenda. Accounting and Business Research, 49(1), 95-119. https://doi.org/10.1080/00014788.2018.1459458
- Sancho-Zamora, R., Hernandez-Perlines, F., Pena-Garcia, I., & Gutierrez-Broncano, S. (2022). The Impact of Absorptive Capacity on Innovation: The Mediating Role of Organizational Learning. International Journal of Environment Research and Public Health, 19(2), 842. https://doi.org/10.3390/ijerph19020842
- Santos, F., Pereira, R., & Vasconcelos, J. B. (2020). Toward robotic process automation implementation: an end-to-end perspective. Business Process Management Journal, 26(2), 405-420. https://doi.org/10.1108/BPMJ-12-2018-0380
- Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). Partial least squares structural equation modeling: A useful tool for family business researchers. Journal of Family Business Strategy, 13(1), 100521. https://doi.org/10.1016/j.jfbs.2021.100521
- Scott, W. (2003). Organisation: Rational, Natural, and Open System (5th ed.). Upper Saddle River, NJ: Prentice Hall.
- Siew, E.G., Rosli, K., & Yeow, P.H.P. (2019). Organizational and environmental influences in the adoption of computer-assisted audit tools and tec. International Journal of Accounting Information Systems, 36, 100445. https://doi.org/10.1016/j.accinf.2019.100445
- Singh, A., Gupta, S., & Sharma, R. (2023). TOE framework and adoption of digital technologies in auditing. Journal of Business Research, 161, 113810. https://doi.org/10.1016/j.jbusres.2023.113810
- Sun, T. (2019). Applying Deep Learning to Audit Procedures: An Illustrative Framework. Accounting Horizons, 33(3), 89-109. https://doi.org/10.2308/acch-52455
- Tajudeen, F. P., Jaafar, N. I., & Ainin, S. (2017). Understanding the Impact of Social Media Usage among Organizations. Information & Management, 55(2018), 308–321. https://doi.org/10.1016/j.im.2017.08.004
- Tornatzky, L. G., & Fleischer, M. (1990). The Processes of Technological Innovation. Lexington – MA: Lexington Books.
- Tsou, H.-T., & Hsu, S. H.-Y. (2015). Performance effects of technology–organization–environment openness, service co-production, and digital-resource readiness: The case of the IT industry. International Journal of Information Management, 35(1), 1-14. https://doi.org/10.1016/j.jiinfomgt.2014.09.001
- Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381-396. https://doi.org/10.2308/acch-51071
- Vitali, M. (2024). Artificial intelligence in auditing: Opportunities and challenges. Journal of Emerging Technologies in Accounting, 21(2), 45–63. Elsevier. https://doi.org/10.1016/j.accinf.2024.100637
- Wamba, S. F., Dubey, R., & Gunasekaran, A. (2023). Dynamic capabilities and digital transformation: Implications for auditing. International Journal of Information Management, 70, 102572. https://doi.org/10.1016/j.ijinfomgt.2023.102572
- Warren, J. D., Moffitt, K. C., & Byrnes, P. (2015). How big data will change accounting. Accounting Horizons, 29(2), 397–407. https://doi.org/10.2308/acch-51069
- White, B. S., King, C. G., & Hollada, J. (2020). Blockchain security risk assessment and the auditor. Journal of Corporate Accounting & Finance, 31(2), 47–53. https://doi.org/10.1002/jcaf.22433
- Widuri, R., Oconnell, B., & Yapa, P. W. W. (2019). Adopting generalized audit software: an Indonesian perspective. Managerial Auditing Journal, 31(8/9), 821-847. https://doi.org/10.1108/MAJ-10-2015-1247
- Witte, A. L. (2020). Technology Based Audit Tools: Implications for Audit Quality (Tese de doutorado, Setor de Contabilidade, Bentley University). https://scholars.bentley.edu/cgi/viewcontent.cgi?article=1000&context=etd_2020
- Zhu, K., & Kraemer, K. L. (2005). Post-adoption variations in usage and value of e-business by organizations: cross-country evidence from the retail industry. Information systems Research, 16(1), 61–84. https://doi.org/10.1287/isre.1050.0045